Pandas feladatok
This commit is contained in:
@ -168,16 +168,100 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
"source": [
|
||||
"### 3. feladat [10p]\n",
|
||||
"\n",
|
||||
"Az [unicef.txt](unicef.txt) szövegfájl a világ 5 év alatti népességének élelmezési helyzetéről tartalmaz adatokat. Az egyes sorok felméréseknek felelnek meg, a felmérések országonként időbeli sorrendben vannak felsorolva. Töltsük be az adatokat, határozzuk meg és írjuk ki az alábbi statisztikákat!\n",
|
||||
"- Hány felmérés készült és hány országot érintett?\n",
|
||||
"- Az alábbi statisztikákat csak azon felmérések alapján készítsük el, amelyeknél mind a három érintett indikátor (`Severe Wasting`, `Underweight`, `Overweight`) definiált (azaz ezek pozitív adatok). Ha egy országra több ilyen felmérés is van, akkor a legutóbbit vegyük figyelembe!\n",
|
||||
" - Mely 5 országban a legmagasabb a `Severe Wasting` indikátor?\n",
|
||||
" - Az országok hányadrészében magasabb az `Underweight` indikátor az `Overweight` indikátornál?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" Country United Nations Region United Nations Sub-Region \\\n",
|
||||
"0 AFGHANISTAN Asia Southern Asia \n",
|
||||
"1 AFGHANISTAN Asia Southern Asia \n",
|
||||
"2 AFGHANISTAN Asia Southern Asia \n",
|
||||
"3 ALBANIA Europe Southern Europe \n",
|
||||
"4 ALBANIA Europe Southern Europe \n",
|
||||
"\n",
|
||||
" World Bank Income Classification Survey Year Survey Sample (N) \\\n",
|
||||
"0 Low Income 1997 4846.0 \n",
|
||||
"1 Low Income 2004 946.0 \n",
|
||||
"2 Low Income 2013 21922.0 \n",
|
||||
"3 Upper Middle Income 1996-98 7642.0 \n",
|
||||
"4 Upper Middle Income 2000 1382.0 \n",
|
||||
"\n",
|
||||
" Severe Wasting Wasting Stunting Underweight Overweight \\\n",
|
||||
"0 NaN 18,2 53,2 44,9 6,5 \n",
|
||||
"1 3,5 8,6 59,3 32,9 4,6 \n",
|
||||
"2 4,0 9,5 40,9 25,0 5,4 \n",
|
||||
"3 NaN 8,1 20,4 7,1 9,5 \n",
|
||||
"4 6,2 12,2 39,2 17,0 30,0 \n",
|
||||
"\n",
|
||||
" Source Notes \\\n",
|
||||
"0 Afghanistan 1997 multiple indicator baseline ... Converted estimates \n",
|
||||
"1 Summary report of the national nutrition surve... NaN \n",
|
||||
"2 Afghanistan National Nutrition Survey 2013. (pending reanalysis) \n",
|
||||
"3 National study on nutrition in Albania. Instit... Converted estimates \n",
|
||||
"4 Multiple indicator cluster survey report Alban... NaN \n",
|
||||
"\n",
|
||||
" U5 Population ('000s) \n",
|
||||
"0 3637,632 \n",
|
||||
"1 4667,487 \n",
|
||||
"2 5235,867 \n",
|
||||
"3 307,887 \n",
|
||||
"4 278,753 \n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"frame = pd.read_csv(\"unicef.txt\", sep=\"|\")\n",
|
||||
"print(frame[:5])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"keszult: 854\n",
|
||||
"Orszag: 152\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"orszag = frame[\"Country\"].count()\n",
|
||||
"\n",
|
||||
"print(\"keszult: \",orszag)\n",
|
||||
"\n",
|
||||
"city = frame.groupby(\"Country\")[\"Survey Year\"].count().count()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"print(\"Orszag: \",city)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@ -191,7 +275,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.5"
|
||||
"version": "3.13.0"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
Reference in New Issue
Block a user